

ANNUAL REPORT FOR 2012

The annual report of operations of the Water Treatment Plant and Supply Reservoir for the year ending December 31, 2012 is respectfully submitted herewith.

The City of Findlay Water Treatment Plant is responsible to provide the citizens of Findlay and the surrounding area with an uninterruptible supply of safe, clean and pleasant tasting drinking water at a reasonable rate.

The water treatment plant is very fortunate to have an outstanding supply of raw water in both quantity and quality. We are also very blessed with a dedicated and well educated staff which helps ensure that we are delivering the highest quality of water possible.

We had three retirements during the year and they were Superintendent Jeff Newcomer, Supervisor Paul Brown and Operator Larry Snodgrass.

The following is a list of the current water treatment and supply reservoir employees.

Water Treatment Plant Employees

Name	Position	Year Hired
Jeff Newcomer	Superintendent, Class IV	2012
Russ Boes	Supervisor, Class III	2012
Tim Foust	Operator, Class I	2000
Rick Parker	Operator, Class III	2001
Rob Householder	Operator, Class I	2004
Randy Zacharias Sr.	Operator, Class I	2011
Matt Karl	Operator, Class I	2012

Brett Young	Lab Tech II, Class III	2000						
Tim Couch	Lab Tech I, Class III	2003						
Dean Hoge	Assistant Operator	1989						
Dean Hoge	Assistant Operator	1707						
Brian Egts	Maintenance Mechanic II	1990						
Chip Flanagan	Maintenance Mechanic II	2000						
Brad Eblen	Maintenance Mechanic I	1991						
Marina Vielhaber Zachea	Administrative Asst.	2003						
Supply Reservoir								
Rich Cap	Maintenance Mechanic I	2001						

2012 has been a busy year for the water treatment plant and supply reservoir. Below is a partial list of items that were accomplished in addition to the routine maintenance and lab testing that we do on a daily basis.

Maintenance items

- Replaced raw water actuator
- Replaced actuator on filter #2 effluent
- Upgraded carbon feed system with new plumbing and pumps
- Installed level transmitter on the soda ash storage bin
- Hauled 984 loads of lime sludge to drying beds or fields

Lab items

- Tested 259 bacteria samples for other Public Water Supplies
- Tested 56 bacteria samples for private individuals
- Tested 13 bacteria samples for new mains

- Tested 11 bacteria samples for new fire lines
- Collected and tested 31 special purpose bacteria samples
- Tested 50 samples for chemical analysis for other Public Water Supplies
- Answered rusty water complaints due to system flushing, and construction projects

Reservoir items

- Treated reservoir #1 in May, July, August and October
- Treated reservoir #2 in May, July, September
- Inspected and repaired #2 outlet structure
- Purchased and placed 4,929 tons of rip rap
- Replaced damaged floats on boat docks
- Cleaned up storm damage around reservoir

Other items

- Upgrade hardware and software for SCADA system
- Worked on clearwell project with engineering firm
- Finished concrete work around WTP
- Started operation of SCU #2
- Had generators inspected and repaired

Goals for 2013

- Start construction on clearwell fix
- Repair 24" transmission line at treatment plant
- Repair 16" line at treatment plant
- Miscellaneous concrete work at treatment plant and supply reservoir
- Place rip-rap at reservoir
- Install new roof at reservoir pump station #1
- Repair guides and gates at reservoir transfer station
- Get estimates on painting and repair of SCU #1

I would like to thank all of the water department employees for their dedicated service to the City of Findlay this past year. I would also like to thank City Council and the Mayor and her administration for their continued confidence and support of me and my staff throughout the year.

Sincerely,

Jeff Newcomer
Superintendent
City of Findlay
Water Treatment Plant

City of Findlay Water Department Drinking Water Consumer Confidence Report For 2011

Superintendent Jeff Newcomer

Mayor Lydia L. Mihalik Service-Safety Director Paul E. Schmelzer, P.E., P.S.

Introduction

The following report has been prepared to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, how to participate in decisions concerning your drinking water and water system contacts.

Source water information and assessment

Our water source is surface water pumped from the Blanchard River into the Findlay Reservoir, which is located three miles southeast of the water treatment plant. For the purpose of source water assessments, in Ohio all surface waters are considered susceptible to contamination. By their nature, surface waters are readily accessible and can be contaminated by chemicals and pathogens, which may rapidly arrive at the public drinking water intake with little warning or time to prepare. The City of Findlay's drinking water source protection area contains potential contaminant sources such as agricultural runoff, industrial storm water, gas station runoff, home construction, animal feed lot runoff, gas lines and gas and oil wells, wastewater treatment discharges, cemeteries, airports, silage, farm machinery repair, pesticide/fertilizer/petroleum storage areas, pasture, closed and inactive landfills, roadways and railways, and one site being investigated by Ohio EPA's Division of Emergency and Remedial Response (Hobbs Dump) just outside the protection area in Seneca County.

We treat your water using lime/soda softening, coagulation, sedimentation, stabilization, fluoridation, disinfection, and filtration to remove or reduce harmful contaminants in the source water; however, no single treatment technique can address all potential contaminants. The potential for water quality impacts can be further decreased by implementing measures to protect the Blanchard River. Information that is more detailed is in the City of Findlay's Drinking Water Source Assessment Report, which can be obtained by calling the Findlay Water Department at 419-424-7193.

Sources of contamination to drinking water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

Who needs to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

About your drinking water

The EPA requires regular sampling to ensure drinking water safety. Our water department conducted sampling for bacteria, inorganic, synthetic organic, and volatile organic contaminants during 2011. Samples were collected for 51 different contaminants, most of which were not detected in the City of Findlay water supply. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. The Ohio EPA also requires us to monitor for unregulated contaminants that have no current MCLs, treatment techniques or action levels. Some of our data, though accurate, are more than one year old.

Listed below is information on those contaminants that were found in the City of Findlay drinking water.

Level Range of Sample

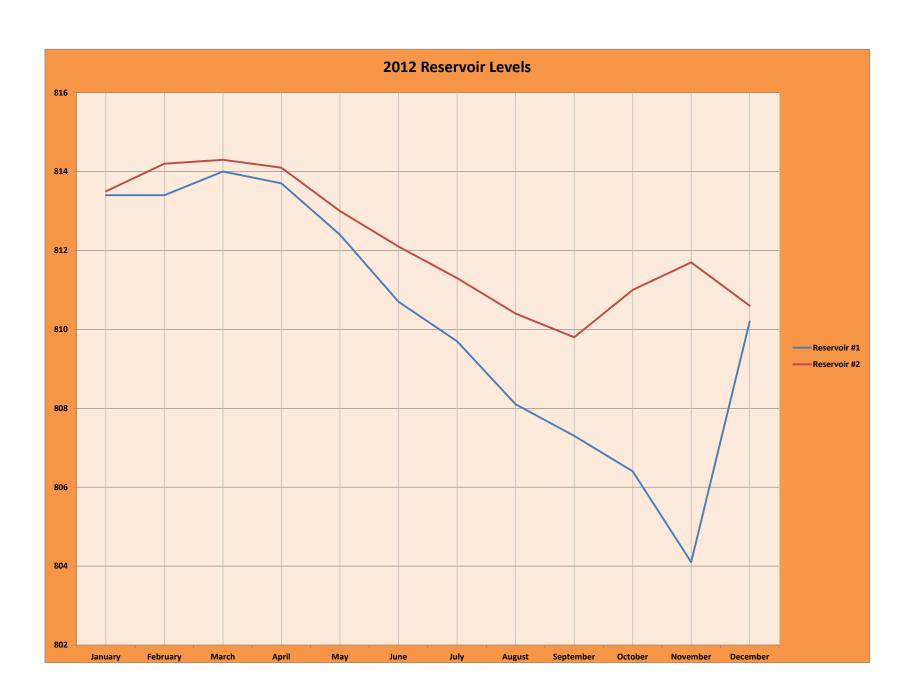
Contaminants (Units)	MCLG	MCL	Level Found	Range of Detections	Violation	Sample Year	Typical Source of Contaminants
Bacteriological							
Total Organic Carbon (ppm)	NA	TT	1.7	1.2 – 3.3	NO	2011	Naturally present in the environment.
The value reported under percentage of TOC requirequirements. A value of	ired to be re	emoved. A	value of g	reater than one (1) indicates t	hat the wate	en percentage of TOC actually removed to the er system is in compliance with TOC removal
Turbidity (NTU)	NA	TT	0.22	0.04 - 0.22	NO	2011	Soil runoff.
Turbidity (% meeting standard)	NA	TT	100%	100% – 100%	NO	2011	
is 0.3 NTU in 95% of the	daily samp	les and sh	all not exc	eed 1 NTU at an	y time. As rej	ported abov	tration system. The turbidity limit set by the EPA re, the Findlay Water Department's highest ng the turbidity limits was 100%.
Radioactive Contaminant	ts						
Gross Alpha (pCi/L)	0	15	0.584	NA	NO	2006	Erosion of natural deposits.
Inorganic Contaminants					l .		
Barium (ppm)	2	2	0.010	NA	NO	2011	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Copper (ppm)	1.3	AL=1.3	0.120	NA	NO	2010	Corrosion of household plumbing systems; Erosion of natural deposits.
	Zero out o	of 30 samp	oles was fo	und to have cop	per levels in e	excess of th	e Action Level of 1.3 ppm.
Fluoride (ppm)	4	4	1.03	0.85 – 1.12	NO	2011	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Lead (ppb)	0	AL=15	<2.0	NA	NO	2010	Corrosion of household plumbing systems; Erosion of natural deposits.
	One out o	of 30 samp	les was fo	und to have lead	levels in exc	ess of the A	Action Level of 15 ppb.
Nitrate (ppm)	10	10	0.96	<0.10 - 0.96	NO	2011	Runoff from fertilizer use; Leaching from sept tanks, sewage; Erosion of natural deposits.
Synthetic Organic Contai	minants inc	luding Pes	ticides and	d Herbicides			
Atrazine (ppb)	3	3	0.26	0.24-0.29	NO	2011	Runoff from herbicide used on row crops.
Volatile Organic Contami	nants						
Bromodichloromethane (ppb)	NA	NA	9.7	NA	NO	2011	By-product of drinking water chlorination.
Chloroform (ppb)	NA	NA	13.0	NA	NO	2011	By-product of drinking water chlorination.
Dibromochloromethane (ppb)	NA	NA	3.8	NA	NO	2011	By-product of drinking water chlorination.
Haloacetic Acids (HAA5) (ppb)	NA	60	23.4	14.6 – 33.4	NO	2011	By-product of drinking water chlorination.
Total Trihalomethane (TTHM) (ppb)	NA	80	53.3	30.7 – 83.0	NO	2011	By-product of drinking water chlorination.
Some people who drink with kidneys, or central nervo							may experience problems with their liver,
Residual Disinfectants			2		34.7507		
Total Chlorine (ppm)	MRDLG = 4	MRDL = 4	1.3	1.1 – 1.4	NO	2011	Water additive used to control microbes.

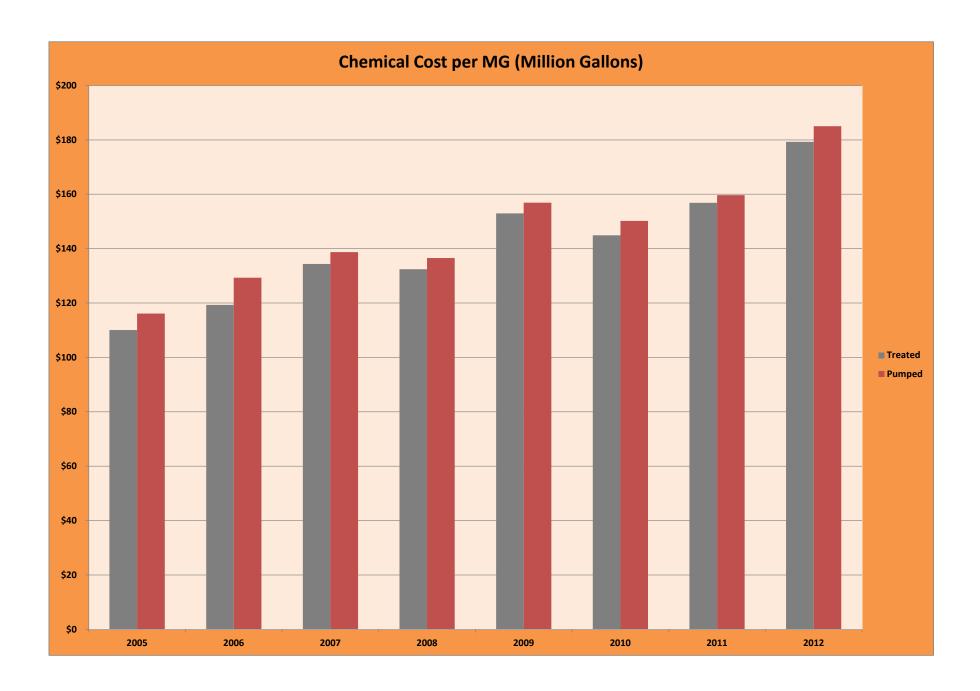
Lead Educational Information

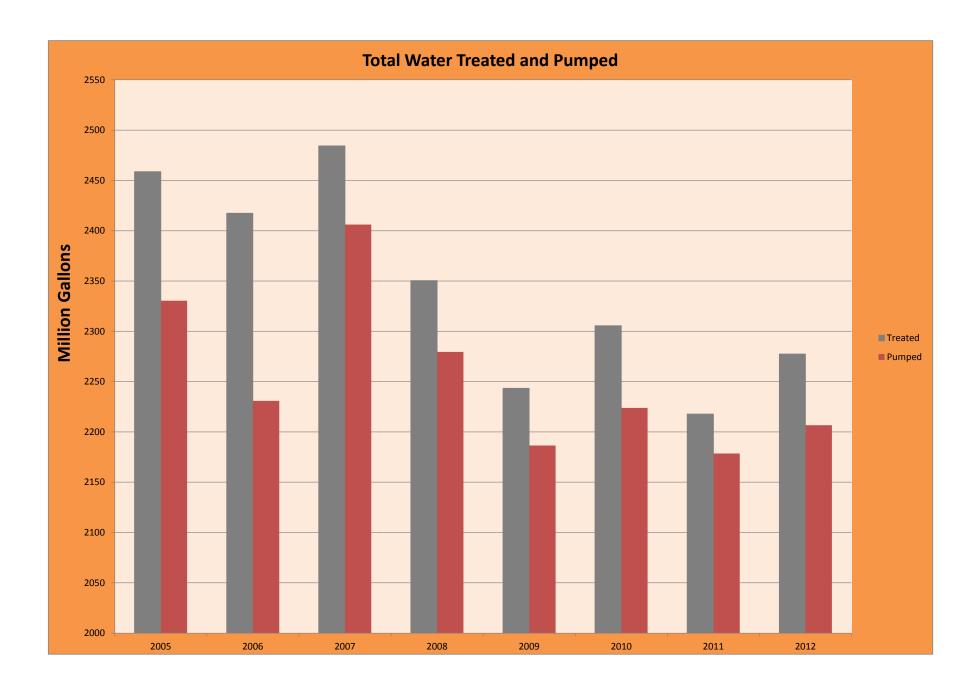
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Findlay Water Department is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791 or at http://www.epa.gov/safewater/lead.

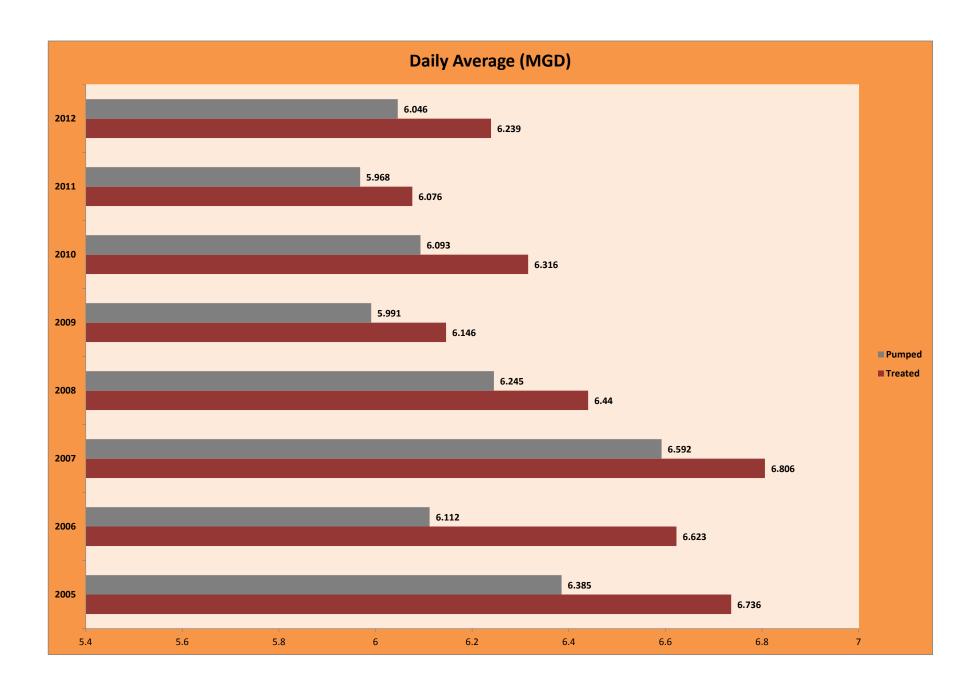
License to Operate (LTO) Information

We have a current, unconditioned license to operate our water system.


How do I participate in decisions concerning my drinking water?


If you have any questions about this report or concerning your water utility, please contact Jeff Newcomer by calling (419) 424-7193 or by writing to 110 North Blanchard Street, Findlay, OH 45840. We want our valued customers to be informed about their water utility. You can attend regular public meetings on the first and third Tuesday of each month, at 7:30 p.m., in Council Chambers in the Municipal Building, at 318 Dorney Plaza.


Definitions of some terms contained within this report


- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Contaminant level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
 Parts per Million (ppm) or Milligrams per Liter (mg/L) are units of measure for concentration of a contaminant. A part per million corresponds to one second in a little
- over 11.5 days.

 Parts per Billion (ppb) or Micrograms per Liter (µg/L) are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7
- Parts per Billion (ppb) or Micrograms per Liter (μg/L) are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.
- Picocuries per Liter (pCi/L): A measure of radioactivity.
- Nephelometric Turbidity Unit (NTU): A measure of water cloudiness.
- Not Applicable (NA)
- Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
 The "<" symbol: A symbol which means less than. A result of <5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not
- The "<" symbol: A symbol which means less than. A result of <5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not detected.

WATER TREATMENT EXPENSES

	2009		2010		2011		2012
Wages	\$ 816,854	\$	805,733	\$	804,666	\$	788,696
Retirement Settlements		\$	113,112			\$	160,945
Benefits	\$ 338,486	\$	291,253	\$	347,446	\$	388,463
Operating	\$ 384,748	\$	383,624	\$	377,501	\$	389,093
Maintenance	\$ 115,276	\$	181,905	\$	219,071	\$	151,475
Utilities	\$ 211,417	\$	211,290	\$	223,104	\$	252,719
Capital		\$	91,867	\$	19,257	\$	6,437
Other	\$ 108,879	\$	80,512	\$	35,706	\$	95,263
TOTAL	\$ 1,975,660	\$ 2,159,296		\$ 2,026,751		\$ 2,233,09	

SUPPLY RESERVOIR EXPENSES

	2009		2010	2011	2012
Wages	\$ 42,907	\$	43,735	\$ 45,490	\$ 47,580
Retirement Settlements					
Benefits	\$ 21,721	\$	21,787	\$ 27,016	\$ 32,227
Operating	\$ 32,323	\$	74,212	\$ 81,406	\$ 115,131
Maintenance	\$ 33,426	\$	119,290	\$ 55,590	\$ 141,596
Utilities	\$ 70,291	\$	70,436	\$ 90,709	\$ 94,624
Capital	\$ 9,316				
Other	\$ 7,161	\$	8,347	\$ 7,005	\$ 28,539
TOTAL	\$ 217,145 \$		337,807	\$ 307,216	\$ 459,697

2012Chemical Report

	Water Pumped	Water Treated	Pounds	Gallons Ferric	Pounds Soda	Pounds	Pounds Carbon	Gallons	Pounds	Pounds	Gallons Sodium		onthly Chem	
Month	MG	MG	Lime	Chloride	Ash	Fluoride	Dioxide	Chlorine	Carbon	Polymer	Permanganate	monthly cost	Pumped Cost/MG	Treated Cost/MG
January cost/chemica	176.8 I	179.47	149171 11038.65	2154 3234.28	25219 4776.73	5602 2009.44	40643 1392.02	3228 2256.37	0 0.00	29 57.86	833 5935.13	30700.48	173.65	171.06
February cost/chemica	168.6 I	169.89	128558 9513.29	2029 3046.59	23937 4533.91	5406 1939.13	36227 1240.77	2986 2087.21	0.00	27 54.81	733 5222.63	27638.34	163.93	162.68
March cost/chemica	177.15 I	175.47	153697 11373.58	2139 3211.76	24690 4676.53	5956 2136.42	38028 1302.46	2909 2033.39	0.00	28 56.84	728 5187.00	29977.97	169.22	170.84
April cost/chemica	176.83 I	175.80	141831 10495.49	2107 3163.71	24862 4709.11	5978 2144.31	39615 1356.81	3306 2310.89	0.00	28 56.84	820 5842.50	30079.67	170.11	171.10
May cost/chemica	206.61	210.07	196416 14534.78	2543 3818.37	30568 5789.88	7211 2586.59	45571 1560.81	4155 2904.35	0.00	31.7 64.35	990 7053.75	38312.88	185.44	182.38
June cost/chemica	206.81	216.63	184517 13654.26	2609 3917.47	31727 6009.41	7710 2765.58	43890 1503.23	4661 3258.04	0.00	1.4 2.84	981 6989.63	38100.46	184.23	175.88
July cost/chemica	219.86 I	231.46	225748 16705.35	2791 4190.75	34110 6460.78	8036 2882.51	49230 1686.13	6081 4250.62	409 407.77	1.5 3.05	1033 7360.13	43947.08	199.89	189.87
August cost/chemica	202.48 I	215.2	179233 13263.24	3434 5156.23	31579 5981.38	7653 2745.13	42634 1460.21	6535 4567.97	2773 2764.68	0.00	1177 8386.13	44324.97	218.91	205.97
September cost/chemica	177.43 I	183.82	157080 11623.92	2177 3268.81	26206 4963.68	6541 2346.26	39961 1368.66	5057 3534.84	903 900.29	0.00	1046 7452.75	35459.22	199.85	192.90
October cost/chemica	176.38 I	189.71	147814 10938.24	2218 3330.38	27220 5155.74	6744 2419.07	44264 1516.04	4028 2815.57	977 974.07	0 0.00	849 6049.13	33198.23	188.22	174.99
November cost/chemica	162.06 I	166.71	135878 10054.97	1840 2762.80	23409 4433.90	5698 2043.87	40374 1382.81	3082 2154.32	1076 1072.77	0.00	654 4659.75	28565.19	176.26	171.35
December cost/chemica	155.76 I	163.17	122329 9052.35	1859 2791.33	22526 4266.65	5788 2076.16	40312 1380.69	2937 2052.96	1372 1367.88	0.00	701 4994.63	27982.64	179.65	171.49
Totals Monthly Avg Max	2206.77 183.90 219.86	2277.4 189.7833 231.46	1922272 160189	27900 2325	326053 27171	78323 6527	500749 41729	48965 4080	7510 626	146 12.18	10545 878.75			
Min cost/gallon Cost/ton	155.76	163.17	148.00	615.00	378.82	717.40	68.50	0.699	1994.00	4060.00	7.125			
annual chemi	ical cost		\$ 142,248	\$ 41,892	\$ 61,758	\$ 28,094	\$ 17,151	\$ 34,227	\$ 7,487	\$ 297	\$ 75,133	\$ 408,287	\$ 185.02	\$ 179.28